Exercise Sheet Solutions #3

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

P1. (Problem 3.3.)(Borel–Cantelli lemma) If $(A_n)_{n\in\mathbb{N}}$ is a family of measurable subsets of a probability space (X, \mathcal{B}, μ) and $\sum_{n \in \mathbb{N}} \mu(A_n) < \infty$, then

$$\mu(\{x \in X \mid x \in A_n \text{ for infinitely many } n \in \mathbb{N}\}) = 0.$$

Solution: Notice that what we want to prove is $\mu(\bigcap_{N\in\mathbb{N}}\bigcup_{n\geq N}A_j)=0$. As μ is finite and $(\bigcup_{n\geq N} A_n)_N$ is a nested sequence of sets, we have that by continuity of the measure and

$$\mu(\bigcap_{N\in\mathbb{N}}\bigcup_{n\geq N}A_j) = \lim_{N\to\infty}\mu(\bigcup_{n\geq N}A_j) \leq \lim_{N\to\infty}\sum_{j\geq N}\mu(A_j) = 0,$$
(1)

in where the last equality comes from the fact that $\sum_{n\in\mathbb{N}} \mu(A_n) < \infty$.

P2. Let (X, \mathcal{F}, μ) be a measure space and f a measurable function. Prove the Markov-Chebyshev inequality:

$$\forall \alpha>0, \mu(\{|f|>\alpha\}) \leq \frac{1}{\alpha} \int_{\{|f|>\alpha\}} |f| \, d\mu \leq \frac{1}{\alpha} \int |f| \, d\mu,$$

where we denote $\{|f| > \alpha\} = \{x \in X \mid |f(x)| > \alpha\}.$

Solution: Observe that
$$\mu(\{|f| > \alpha\}) = \int 1 \cdot \mathbb{1}_{\{|f| > \alpha\}}(x) d\mu(x) \le \int \frac{|f(x)|}{\alpha} \mathbb{1}_{\{|f| > \alpha\}}(x) d\mu(x) = \frac{1}{\alpha} \int_{\{|f| > \alpha\}} |f| d\mu \le \frac{1}{\alpha} \int |f| d\mu.$$
(2)

P3. Let (X, \mathcal{F}_X, μ) and (Y, \mathcal{F}_Y, ν) be probability spaces, and let $T: X \to Y$ be a measurable function. Define $T\mu(A) := \mu(T^{-1}(A))$ for each $A \in \mathcal{F}_Y$. Prove that $\nu = T\mu$ if and only if for all integrable function f:

$$\int_{Y} f \, d\nu = \int_{X} f \circ T \, d\mu. \tag{3}$$

Solution: (
$$\Leftarrow$$
) For any set $A \in \mathcal{F}_Y$, take $f = \mathbb{1}_A$ in eq. (7) to get $\nu(A) = \mu(T^{-1}A)$.
(\Rightarrow) Let $f = \sum_{i \in I} c_i \mathbb{1}_{A_i}$ a simple function. Then
$$\int_X f \circ T d\mu = \int_X \sum_{i \in I} c_i \mathbb{1}_{A_i} \circ T d\mu = \sum_{i \in I} c_i \int \mathbb{1}_{T^{-1}A_i} d\mu = \sum_{i \in I} c_i \mu(T^{-1}A_i) = \sum_{i \in I} c_i \nu(A_i) = \int \sum_{i \in I} c_i \mathbb{1}_{A_i} d\nu.$$
(4)

Hence, the statement is true for simple functions. Let f be a positive measurable function. Take $(f_n)_n$ a sequence of positive simple functions such that $f_n \nearrow f$ as $n \to \infty$. Then $f_n \circ T \nearrow f \circ T$ as $n \to \infty$ as well, so by monotone convergence theorem, we have that having for each $n \in \mathbb{N}$

$$\int_{Y} f_n \, d\nu = \int_{X} f_n \circ T \, d\mu,\tag{5}$$

that
$$\int_{Y} f \, d\nu = \lim_{n \to \infty} \int_{Y} f_n \, d\nu = \lim_{n \to \infty} \int_{X} f_n \circ T \, d\mu = \int_{X} f \circ T \, d\mu. \tag{6}$$

Consequently, we have the statement for positive functions. To conclude, notice that for every measurable function f, we can write $f = f_+ - f_-$ where f_+ and f_- are positive integrable

$$\int_{Y} f \, d\nu = \int_{Y} f_{+} \, d\nu - \int_{Y} f_{-} \, d\nu = \int_{X} f_{+} \circ T \, d\mu - \int_{Y} f_{-} \, d\nu = \int_{X} f_{-} \circ T \, d\mu = \int_{X} (f_{+} - f_{-}) \circ T \, d\mu = \int_{X} f \circ T \, d\mu,$$
 concluding.

P4. (Problem 3.2.) Let (X, \mathcal{B}, μ) be a probability space. Let $(A_n)_{n \in \mathbb{N}}$ be a family of measurable sets with $a = \inf_{n \in \mathbb{N}} \mu\left(A_n\right) > 0$. We aim to show that there is a set $E \subseteq \mathbb{N}$ such that $\bar{d}(E) := \limsup_{N \to \infty} \frac{|E \cap \{1, \dots, N\}|}{N} \ge a$, and for any finite set $F \subseteq E, F \ne \emptyset$, one has $\mu\left(\bigcap_{n \in F} A_n\right) > 0$

Solution: First of all, notice that we can assume without loss of generality that for every $F \subseteq \mathbb{N}$ finite, we have that $\bigcap_{n \in F} A_n \neq \emptyset$ if and only if $\mu(\bigcap_{n \in F} A_n) > 0$. Indeed, we can replace $(A_n)_{n \in \mathbb{N}}$ by $(\tilde{A}_n)_{n \in \mathbb{N}}$ where $\tilde{A}_n = A_n \setminus \bigcup_{F \in \mathcal{F}} \bigcap_{n \in F} A_n,$

$$\tilde{A}_n = A_n \setminus \bigcup_{F \in \mathcal{F}} \bigcap_{n \in F} A_n,$$

$$\mathcal{F} = \{ F \subseteq \mathbb{N} \mid |F| < \infty, \bigcap_{n \in F} A_n \neq \emptyset, \mu(\bigcap_{n \in F} A_n) = 0 \}.$$

Notice that $\bigcup_{F\in\mathcal{F}}\bigcap_{n\in F}A_n$ is countable union of finite intersection of measurable sets, so it is measurable. Moreover, it has measure zero because the aforementioned sets have measure zero. So, we have that for each $n \in \mathbb{N}$, $\tilde{A}_n \subseteq A_n$ is such that

$$\mu(A_n) = \mu(\tilde{A}_n),$$

and the same applies for every finite intersection, which shows that we can replace A_n by \tilde{A}_n Notice that by Fatou's lemma

$$\int \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \mathbbm{1}_{A_n}(x) d\mu(x) \geq \limsup_{N \to \infty} \int \frac{1}{N} \sum_{n=1}^N \mathbbm{1}_{A_n}(x) d\mu(x) = \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \mu(A_n) \geq a.$$

Therefore, there is $x \in X$ such that

$$\limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{A_n}(x) \ge a.$$

Call $E = \{n \in \mathbb{N} \mid x \in A_n\}$. Then notice that $n \in E$ if and only if $\mathbb{1}_{A_n}(x) = 1$. Hence, we have

$$\overline{d}(E) = \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{E}(n) = \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{A_n}(x) \ge a.$$

In addition, for every finite subset $F \subseteq E$, we have that $\forall n \in F, x \in A_n$, and thus $\bigcap_{n \in F} A_n \neq \emptyset$, which implies that $\mu\left(\bigcap_{n \in F} A_n\right) > 0$.